
FLUIDWELL
GENERAL

MODBUS COMMUNICATION
PROTOCOL

Manual : MODB100_v1302
Copyright 1998 : Fluidwell bv - The Netherlands.

MODB100_v1302.doc

Page: 2

Information in this manual might change without prior notice. The manufacturer is not responsible for
mistakes in this material or for incidental damage direct or indirect as a result of this delivery,
performance or use of this material.

All rights reserved. No parts of this publication may be reproduced or used in any form or by any
means without written permission of your supplier.

Warning: Any responsibility is lapsed if the instructions and procedures as described in this
manual are not followed.

LIFE SUPPORT APPLICATIONS: The products FW/0110-series are not designed for use in life
support appliances, devices, or systems where malfunction of the product can reasonably be
expected to result in a personal injury. Customers using or selling these products for use in
such applications do so at their own risk and agree to fully indemnify the manufacturer and
supplier for any damages resulting from such improper use or sale.

CONTENTS:

Contents: ...2
1. Introduction ...3
1.1. General ...3
1.2 Design choices in perspective to MODBUS specification..3
2. Ascii record structure..4
2.1. General ...4
2.2. Lrc - checksum ...4
3. Rtu record structure ..5
3.1. General ...5
3.2. Crc-error check ...5
4. Function codes ...6
4.1. General ...6
5. Explanation function codes...7
5.1. General ...7
5.2. Read table data ..7
5.3. Write table data...8
5.4 Error response codes ...9
6. Standard begin-table fluidwell products ...11
6.1. General ...11
6.2. Indexed variables..13
7. General remarks...13
7.1. General ...13
INDEX:...14
Notes: ..15

MODB100_v1302.doc

Page: 3

1. INTRODUCTION

1.1. GENERAL

Fluidwell's communication protocol is compatible with MODBUS, used for Modicon Plc's e.g.. This
protocol is described in "Protocol Reference Guide" (Modicon doc-nr. PI-MBUS-300 rev. C).

Fluidwell supports both modes of the above mentioned protocol: ASCII-mode and RTU-mode. These
modes are described in chapter 2. and chapter 3. The selection between both modes is done at
SETUP-level (100-series) or Parameter-level (300-series), just as setting the baud-rate, bus address
and delay time.

The baudrate is selectable through values 1200, 2400, 4800, 9600. The bus address can be set from
1 up to and including 255.
Fluidwell equipment uses eight databits, no parity, a startbit and one stopbit. The least significant bit of
every byte is send first.

This manual describes the general MODbus protocol implementation for all 100- and 300-series
products. The product specific variables are described in the appendix of the operation manual.

1.2 DESIGN CHOICES IN PERSPECTIVE TO MODBUS SPECIFICATION

This communication package supports MODBUS functions “read holding registers” (03) and “preset
multiple registers” (16). It should be noted that for these functions MODBUS specifies a register as
being two bytes. Since some of the variables have a length which exceeds two bytes, a variable might
need to be represented in more than one register. Therefore for reading or writing a variable its
number (register number) and its length (number of registers) need to be supplied. The internal
variable table may be visualised as a collection of small groups of registers, with each group
representing a unique variable. This leads to the implication that it is not possible to read/write multiple
variables in one request. Refer to chapter 5 for exact description of implemented MODBUS functions.

MODB100_v1302.doc

Page: 4

2. ASCII RECORD STRUCTURE

2.1. GENERAL

In ASCII-mode the databytes are ASCII-coded. This means that each (hexadecimal) databyte is split
up into two nibbles; each nibble is send as its ASCII code afterwards. In this way every databyte is
transferred as two ASCII-bytes.

Example:
The databyte 4Ah is transferred as 34h (= '4') and 41h (='A').

The advantage of this protocol-mode is that an ASCII-terminal can be used to "overhear" the dataline
during debugging. A disadvantage is the quantity of data almost doubles.

The most significant nibble is send first.
msn : most significant nibble ASCII coded
lsn : least significant nibble ASCII coded

Following the example: msn = 34h and lsn = 41h.

ASCII
BYTE-NR

DATA
BYTE-NR

Contents: Meaning:

00 00 ":" (3Ah) Start of record marker
01 01 address msn Bus address product
02 01 address lsn Bus address product
03 02 function msn Function to be executed
04 02 function lsn Function to be executed
05 03 msg-byte 0 msn Data for/from the function
06 03 msg-byte 0 lsn Data for/from the function
07 04 msg-byte 1 msn Next byte
08 04 msg-byte 1 lsn Next byte

// // etc. //

05+2*x 03+x msg-byte x msn Last function data byte
06+2*x 03+x msg-byte x lsn Last function data byte
07+2*x 04+x ERROR CHECK msn LRC: LongitudinalRedundancy
08+2*x 04+x ERROR CHECK lsn Check: see below
09+2*x 05+x CR (0Dh) End of record marker 1
10+2*x 06+x LF (0Ah) End of record marker 2

Table 1: ASCII-mode.

Since each databyte is now represented as two ASCII-bytes, numbering of data-bytes in the record
does not count up synchronously with the real number of bytes transferred over the line.

2.2. LRC - CHECKSUM

The checksum is calculated by adding all databytes in the record together from bus-address (data-
byte 01) up to and including the last function data-byte (03+x) and take the two’s complement of the
least significant byte, which means inverting the byte and adding 1. The calculated LRC-byte is now
added to the record as its ASCII-coded 2-byte value.

The receiver must use the same kind of calculation and compare the result with the received
checksum. A less complicated procedure is to calculate from the bus address up to AND INCLUDING
the checksum (this means databytes 1 up to and including 04+x). If the record is not mutilated after
receiving, the result must be 00.

All characters different as CR, LF, '0' - '9', ':', 'A' - 'F' point out a mutilated message.

MODB100_v1302.doc

Page: 5

3. RTU RECORD STRUCTURE

3.1. GENERAL

RTU
BYTE-NR

DATA
BYTE-NR

Contents: Meaning:

A time of at least 0.11 seconds between records is used as record
separator!

01 01 address Bus address product
02 02 function Function to be executed
03 03 msg-byte 0 Data for/from the function
04 04 msg-byte 1 Next byte

// // etc. //

05+x 05+x msg-byte x Last function data byte
06+x 06+x ERROR CHECK lsb CRC: Cyclic Redundancy Check
07+x 07+x ERROR CHECK msb CRC: Cyclic Redundancy Check

A time of at least 0.11 seconds between records is used as record
separator!

Table 2: RTU-mode.

In the table above, databyte-number 0 is NOT used by purpose to express the similarity with the
ASCII-mode.

RTU-mode sends all databytes without conversion; time outs are used as record separators. Please
notice that the time between two databytes WITHIN a record may not exceed 0.11 seconds! This
time-to-wait is enlarged to two "PC-clockticks" (2/18.2 sec) compared with the original MODBUS
specification, to get a more reliable and simplified time-out detection.

In RTU-mode the databyte-numbers in the record do count up synchronously with the real number of
bytes transferred over the line, since each byte is transferred in its original form.

3.2. CRC-ERROR CHECK

The CRC-error check method uses the following polynomial:

X16 + X15 + X2 + X0

Description applied procedure:
1 Initialise a 16 bit-register with 0FFFFh (sixteen ones).
2 Put pointer to first byte (databyte no. 1 (address)).
3 Initialise a bit-counter to 8.
4 Put EXOR from LSbyte 16 bits-reg and pointed byte in LSbyte 16 bits-reg.
5 Shift the 16 bits-reg one position to the right; shift in a zero at the left side,

save the shifted-out bit (LSbit).
6 Is the shifted-out bit "1", then EXOR the 16 bits-reg with A001h.
7 Is the shifted-out bit "0", then don't do anything at all.
8 Decrement bit-counter; if not all bits done, return to step 5.
9 Increment pointer to next byte, if not all bytes done, return to step 3.
10 Now, the sender adds the contents of the 16 bits register to the end of the

message to be send.

WARNING: The CRC checksum bytes are in LSB-MSB order! (Contrary to the other words in
the message which are in MSB-LSB order)

MODB100_v1302.doc

Page: 6

This CRC must be calculated from the bus-address (data-byte 01) up to and including the last data-
byte (05+x).
The receiver can determine the CRC by following the same procedure, but now up to and including
both checksum bytes (06+x/07+x). The now calculated checksum must equate zero, otherwise a
mutilated message was received.
Extending the procedure to including the checksum bytes avoids the need for a compare of received
and newly calculated checksum.

4. FUNCTION CODES

4.1. GENERAL

The table below contains an overview of the communication-functions. The second column contains
the standard MODBUS description.
To be compatible with the several MODBUS-implementations in software-programs as SCADA e.g.,
only the Read en Write holding registers functions are used.
The third column shows the Fluidwell name. The last column indicates the paragraph which contains
more detailed explanation of the function.

Due to the standard table-begin for all the Fluidwell equipment (see chapter 6), it is possible to detect
the type of product, software-version etc. of each product present on the communication bus.

MODICON FUNCTION CODES FLUIDWELL
IMPLEMENTATION

PAR.

00 Not defined
01 Read Coil(s) status
02 Read input(s) status
03 Read holding registers Read table data 5.2
04 Read input registers
05 Force single Coil
06 Preset single register
07 Read exception status
08 Loopback diagnostic test
09 Program (484 only)
10 Poll prog. complete (484)
11 Fetch event count.comm.
12 Fetch comm. event log
13 Program (184,384,484,584)
14 Poll prog. (see 13)
15 Force multiple coils
16 Preset multiple reg's. Write table data 5.3
17 Report slave id.
18 Program 884 & micro 84
19 Reset comm. link
20 Read general ref. (584)
21 Write general ref. (584)
22-64 Reserv.f. exp. funct.
65-72 Reserv.f. user funct.
73-119 Illegal functions
120-127 Reserv.f. intern. use
128-255 Exception responses Error response 5.4

Table 4: Function codes.

MODB100_v1302.doc

Page: 7

5. EXPLANATION FUNCTION CODES

5.1. GENERAL

In the diagrams below, following lay-out is used:

The upper line indicates the sequence number of each byte. These sequence numbers correspond
with the databyte-numbers in chapter 2 and chapter 3.

The byte(s) ‘CS’ contains the CheckSum. In ASCII-mode this is a one-byte LRC (which will be
represented in two bytes, just like all databytes in an ASCII record) and for RTU-mode this is a two
byte CRC.

5.2. READ TABLE DATA

This function complies with the MODBUS specified function “Read holding registers” (03). It is used to
read variables from the system. The system will respond to this type of message by sending either an
acknowledge or an error response. Below you will find the record structures that are used to request
and acknowledge this function.

The read request record looks like:

A read response record looks like:

Address refers to the bus-address of the slave module that needs to execute the function. Function
holds the MODBUS function code. Variable number tells the system which variable to read, a
complete table of variable numbers can be found in chapter 6 and Appendix A.
These tables also show the number of bytes that need to be read to get the complete value. It is by no
means possible to read more bytes than the real length of the variable as mentioned in this table.
When such a request is made though, the system will respond with an error. This implies it is only
possible to read one variable per request.

It should be noted that the read request record supplies the system with the number of words instead
of the number of bytes to read. When variables with an odd number of bytes need to be read the
number of words is rounded up (e.g. to read 1-byte bus address -> requested number of words is 1).
This will result in an response which holds one extra byte, which will always be 0. The result is valid
though, because this extra byte will always be the MS-byte of the returned data.

MODB100_v1302.doc

Page: 8

In contrary to reading too much bytes, it is possible to read a variable partially. When a request is
made to read less bytes than the complete length of the variable, the system will return the requested
number of bytes from the least significant part of the variable (e.g. datetime holds 6 bytes YMDHMS,
when you request 2 words DHMS will be returned).

When the read request record is correctly received by the system and all data-members turn out to be
valid, the system will return the read response record as mentioned above. The address and function
bytes are an exact copy of the ones in the read request record, bytecount shows the number of bytes
of data that the record holds. Of course as many bytes as requested are returned, so this number
always equates 2*number_of_words.

In case any data-members in the read request record turn out to be invalid, the system will return an
error response record. Paragraph 5.4 holds an exact description of all possible error records with an
explanation of the possible causes. When the system does not return any record at all the cause might
be found in a wrong bus-address, wrong checksum or a distortion in the communication process.

5.3. WRITE TABLE DATA

This function complies with the MODBUS specified function “Preset multiple registers” (16). It is used
to write variables in the system. The system will respond to this type of message by sending either an
acknowledge or an error response. Below you will find the record structures that are used to request
and acknowledge this function.

It is not always possible to write a variable. Some variables are never writeable (e.g. serial number)
and some others can become temporarily unavailable for writing (e.g. baudrate). The standard table
for Fluidwell products (chapter 6) contains a column which shows the writeability of a variable. For the
product specific variables mentioned in Appendix A goes that the ones that are also programmable on
the unit itself (configuration variables) are unavailable for writing during local programming, to avoid
conflicts between local and remote programming. Other, non-programmable, product specific variables
are never writeable unless mentioned otherwise.

The write request record looks like:

An write response record looks like:

Address, function, variable number and number of words are used the same way as with the read
request record which was explained in the previous paragraph. Furthermore the bytecount should hold
the number of bytes that need to be written to the given variable. The system will only accept a write
request record when the bytecount equates the doubled value of the number of words
(bytecount=2*number_of_words).

MODB100_v1302.doc

Page: 9

The number of words may never exceed the true length of the variable as given in the variable table.
When variables with an odd number of bytes need to be written the number of words is rounded up
(e.g. to write 1-byte bus address -> number of words is 1). This implies that the bytecount should
always be an even number and therefore a dummy-byte needs to be added when variables of odd
length are written. This dummy-byte should always be zero and must be added as the most significant
byte in the data to write.

Example
We want to change the communication mode of the system. In the standard begin table for
Fluidwell products we find that the variable number is 11 (0Bh). We also find that this variable
is only one byte in length. Furthermore The MODBUS function code for writing is 16 (10h)
and we assume the bus-address as being 01 for the system in question. We are willing to
write the byte XX to this variable. The write request record should look like this:

01 10 00 0B 00 01 02 00 XX CS

The highlighted part shows we request 1 word, which leads to a bytecount of 2 and we add
an extra ‘0’-dummy-byte at the most significant part of the data to write.

In contrary to writing too much bytes, it is possible to write a variable partially. When a request is made
to write less bytes than the complete length of the variable, the system will overwrite the least
significant part of the variable in question.

When the write request record is correctly received by the system and all data-members turn out to be
valid, the system will return the write response record as mentioned above. This response record is an
exact copy of the request record, only without the bytecount and the written databytes.

In case any data-members in the write request record turn out to be invalid, the system will return an
error response record. Paragraph 5.4 holds an exact description of all possible error records with an
explanation of the possible causes. When trying to write a variable from the “standard begin-table for
Fluidwell products” that is not implemented on the system in question the write request will be
confirmed, but of course this has no influence on the system whatsoever.
When the system does not return any record at all the cause might be found in a wrong bus-address,
wrong checksum or a distortion in the communication process.

5.4 ERROR RESPONSE CODES

When a request is made and the system finds one of the data-members in the record to be invalid it
will make this not acknowledge clear by sending an error response record.

To let the master system know this is an error record the MODBUS function code will be changed.
While the ms-bit of this code is normally always 0 it will be set to 1 (=OR 0x80). The master system
can determine what went wrong by reading the error code on the third position of the error response
record. In the table below you can find these error codes with an explanation of its meaning and the
possible cause(s).

Error code 0 = reserved for future use

Error code 1 = ILLEGAL FUNCTION
Meaning: The function code received by the system does not represent an executable function.
Possible causes:
1. Requested function is not implemented on this system.
2. Function code does not represent a valid MODBUS function.

MODB100_v1302.doc

Page: 10

Error code 2 = ILLEGAL DATA ADDRESS
Meaning: The received data cannot be linked to a variable in the system
Possible causes:
1. Variable number does not represent a valid variable on this system.
2. Length of record does not comply with the expected length.
3. Number of words exceeds the real length of the variable.

Error code 3 = ILLEGAL DATA VALUE
Meaning: The data is not valid with this variable
Possible causes:
1. Value is not valid for this variable. It exceeds the value range of this variable (too low/high).
2. Dummy byte does not equate zero when writing an odd number of bytes.

Error code 4 = FAILURE IN ASSOCIATED DEVICE
Meaning: the message contains an illegal request, so it can not be processed
Possible causes:
1. The communication index is out of range when trying to access an indexed variable.

Error code 5: reserved for future use.

Error code 6 = SLAVE DEVICE BUSY
Meaning: The variable is not available for remote access
Possible causes:
1. Writing to a read-only variable.
2. System is currently being used in program-mode, so remote access is temporarily disabled for

the variable that is being programmed.

When a function is requested and no response frame comes back within a short time (with regards to
the Comdelay value!) the possible causes might be:
1. communication protocol is set to off,
2. message was mutilated due to a distortion on the line,
3. a hardware problem,
4. wrong bus-address,
5. baudrate of communicating devices differs (2400 <-> 9600),
6. communication mode of communicating devices differs (RTU <-> ASCII),
7. startbit, stopbit or number of databits of communicating devices differs,
8. wrong checksum.

MODB100_v1302.doc

Page: 11

6. STANDARD BEGIN-TABLE FLUIDWELL PRODUCTS

6.1. GENERAL

Not all functions are implemented in every Fluidwell product. This may vary per device and
product-family. It is even possible that a product with the same product-number has different software
and/or hardware.
The function-codes 3 and 16 (read and write table data) are implemented in every Fluidwell-product.
To make it possible to access any product (also future products) via this protocol, the table-begin as
described below is mandatory. With this standard begin, communication software can conclude which
other functions are implemented.

Nr. VARIABLE NAME LENGTH NOT WRITABLE

00 Kind of product 2 bytes never writable
01 Model number 2 bytes never writable
02 Serial number product 4 bytes never writable
03 Hardware options 2 bytes never writable
04 Software options 2 bytes never writable
05 Protocol options 2 bytes never writable
06 Software version 2 bytes never writable
07 Protocol version 2 bytes never writable
08 Display languages 2 bytes never writable
09 Bus address 1 byte during local programming
10 Baud rate 2 bytes during local programming
11 Communication mode 1 byte during local programming
12 Comm. index use 2 bytes always writable
13 Comm. index 1 byte always writable
14 Comdelay 2 bytes
15 general status 2 bytes never writable
16 indexed status 1 byte never writable
17 reserved
18 reserved
19 reserved
20 Inputs never writable
21 Outputs never writable
22 Beep command 1 byte always
23 Time and date 6 bytes during local programming
24 Print command not implemented
25 Reboot 2 bytes always writable
26 reserved
27 reserved
28 reserved
29 reserved
30……...Further product dependant variables only!!

Table 5: Standard begin-table Fluidwell products.

MODB100_v1302.doc

Page: 12

Nr. VARIABLE EXPLANATION

00 Kind of product Batch controller, PC, printer etc.
01 Model number Type of product
02 Serial number Serial number binary coded
03 Hardware options Extra hardware mounted, inputs / outputs e.g.
04 Software options Extra software functionality, temperature compensation e.g.
05 Protocol options Protocol extensions, also other protocol implementation e.g.
06 Software version Product software version
07 Protocol version Communication software version
08 Display languages Code for the display languages available
09 Bus address The communication address
10 Baud rate Communication speed 1200=0, 2400=1, 4800=3, 9600=4
11 Communication mode BUS_ASCII=0, BUS_RTU=1, OFF=2 Warning: can not be

enabled remotely
12 Comm. index use User options of the comm. index:

00 : no features
01 : auto increment after each usage
02 : auto decrement after each usage
04 : auto functions also during broadcast access

13 Comm. index Pointer for indexed values
14 Comdelay { 0..9999 } In milliseconds!!
15 General status Device status, general alarm etc.

Meaning of bits [msb…lsb] for 100-series:
0x0001: PCF error
0x0002: EEPROM error
0x0004: data corrupted (communication)
0x0008: receive buffer full (communication)

16 Indexed status status per liquid; busy, overrun, pause etc, new data
17 Reserved
18 Reserved
19 Reserved
20 Inputs See device description
21 Outputs See device description
22 Beep command One byte in units of 0.1 seconds.
23 Date time Order used: year,month,day,hour,minutes,seconds

All bytes binary coded.
24 Print command Not implemented yet
25 Reboot 0xA50F (warm reboot) or 0x5AF0 (cold reboot).

A warm reboot resets the unit, but all programmed variables
are stored.
A cold reboot resets the unit and all of its programmed
variables. Note that also the accumulated total will be lost!

26 Reserved
27 Reserved
28 Reserved
29 Reserved
30……...Further product dependant variables only!!

Table 6: Variable description.

MODB100_v1302.doc

Page: 13

6.2. INDEXED VARIABLES

Some Fluidwell products use an array of multiple variables, for example a linearisation table which
holds multiple frequency-correction pairs or an array of multiple batch sizes. To make easy use of
such an array, a communication index needs to be used.
The variable that will be returned depends of the value of this index. When a larger part of the array
needs to be read or written it is possible to auto-increment or decrement the index, meaning that after
each successful read/write the index will point to the next or previous variable in the array. This way
complete arrays can be accessed fairly easily.
Note that if index=0 the first array member will be returned, so an array of 5 variables uses indices 0
through 4. Be aware that this index can only be used for variables which are marked as indexed in this
manual, it is never possible to use the index to read/write multiple un-indexed variables!

Example
Assume we are communicating with a unit that uses linearisation and has a bus-address of
01. We are willing to read the complete linearisation table from it. Of course we can initialise
the index, read the variable, increment the index, write the new index, read again and repeat
this procedure until the whole table is read, however it is more easily to use the next steps:
1. Initialise the communication index to the first array-member, we need to write:

01 10 00 0D 00 01 02 00 00 DF (LRC checksum! ASCII-mode only!)
2. Set the communication index use to auto-increment, we need to write:

01 10 00 0C 00 01 02 00 01 DF
3. Now we are ready to read the first array-member, for our example the linearisation

table start at address 0400h and each entry contains 6 bytes:
01 03 04 00 00 03 F5

4. The index is now auto-incremented to 01, so now we only need to repeat step 3. until
the whole table is read!

For safety reasons the auto-increment/decrement function is disabled for Fluidwell products which are
used in broadcast-mode (e.g. FW/0300 series), but can still be enabled if desired (see standard begin-
table Fluidwell products, variable 12)

7. GENERAL REMARKS

7.1. GENERAL

All numeric variables are binary coded. There are variables with different lengths:

byte : 8 bits
word : 16 bits
double word : 32 bits

When transmitting multibyte variables, the msb is transmitted first.
In tables, the length of variables is given in bytes.
Several on/off variables use "0" for off-position. A value unequal "0" indicates that the concerning
variable is "on".

Variables that indicate a decimal position contain as value the number of digits behind the decimal
point. This corresponds with the negative value of the exponent from 10 from the number to be
multiplied with the concerning variable.

Example:
K-factor = 1031, decimal position K-factor = 2.
This means that the K-factor has two digits behind the decimal point; the K-factor is 10.31
This corresponds with the multiplying with 0.01 = 10E-2. The last 2 corresponds (but without
minus sign) with decimal position 2.

Time variables - if no other time unit indicated - use a time base of 0.1 second.
If the programmed overrun-time in a batch controller is 6.5 seconds for example, then the
"communication-value" will be 65.

Some variables are always write protected such as the product and serial number. It is always allowed
to read a variable.

MODB100_v1302.doc

Page: 14

 INDEX:

ASCII-mode 4
communication-functions 6
Contents 2
CRC-ERROR CHECK 5
ERROR RESPONSE CODES 9
Function codes 6
Indexed variables 13
LRC - CHECKSUM 4

multiple variables 3
numeric variables 13
Read table data 7
Rtu record structure 5
RTU-mode 5
Standard begin-table fluidwell 11
Write table data 8

MODB100_v1302.doc

Page: 15

NOTES:

MODB100_v1302.doc

Page: 16

NOTES:

